period and timeless mRNA Splicing Profiles under Natural Conditions in Drosophila melanogaster.

نویسندگان

  • Stefano Montelli
  • Gabriella Mazzotta
  • Stefano Vanin
  • Laura Caccin
  • Samantha Corrà
  • Cristiano De Pittà
  • Catharine Boothroyd
  • Edward W Green
  • Charalambos P Kyriacou
  • Rodolfo Costa
چکیده

Previous analysis of Drosophila circadian behavior under natural conditions has revealed a number of novel and unexpected features. Here we focus on the oscillations of per and tim mRNAs and their posttranscriptional regulation and observe significant differences in molecular cycling under laboratory and natural conditions. In particular, robust per mRNA cycling from fly heads is limited to the summers, whereas tim RNA cycling is observed throughout the year. When both transcripts do cycle, their phases are similar, except for the very warmest summer months. We also study the natural splicing profiles of per and tim transcripts and observe a clear relationship between temperature and splicing. In natural conditions, we confirm the relationship between accumulation of the per(spliced) variant, low temperature, and the onset of the evening component of locomotor activity, first described in laboratory conditions. Intriguingly, in the case of tim splicing, we detect the opposite relationship, with tim(spliced) expression increasing at higher temperatures. A first characterization of the 4 different TIM protein isoforms (resulting from the combination of the natural N-terminus length polymorphism and the C-terminus alternative splicing) using the 2-hybrid assay showed that the TIM(unspliced) isoforms have a stronger affinity for CRY, but not for PER, suggesting that the tim 3' splicing could have physiological significance, possibly in temperature entrainment and/or adaptation to seasonal environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two alternatively spliced transcripts from the Drosophila period gene rescue rhythms having different molecular and behavioral characteristics.

The period (per) and timeless (tim) genes encode key components of the circadian oscillator in Drosophila melanogaster. The per gene is thought to encode three transcripts via differential splicing (types A, B, and C) that give rise to three proteins. Since the three per mRNA types were based on the analysis of cDNA clones, we tested whether these mRNA types were present in vivo by RNase protec...

متن کامل

Daily Activity of the Housefly, Musca domestica, Is Influenced by Temperature Independent of 3′ UTR period Gene Splicing

Circadian clocks orchestrate daily activity patterns and free running periods of locomotor activity under constant conditions. While the first often depends on temperature, the latter is temperature-compensated over a physiologically relevant range. Here, we explored the locomotor activity of the temperate housefly Musca domestica Under low temperatures, activity was centered round a major and ...

متن کامل

Photosensitive Alternative Splicing of the Circadian Clock Gene timeless Is Population Specific in a Cold-Adapted Fly, Drosophila montana

To function properly, organisms must adjust their physiology, behavior and metabolism in response to a suite of varying environmental conditions. One of the central regulators of these changes is organisms' internal circadian clock, and recent evidence has suggested that the clock genes are also important in the regulation of seasonal adjustments. In particular, thermosensitive splicing of the ...

متن کامل

TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock.

The timeless protein (TIM) is a central component of the circadian pacemaker machinery of the fruitfly Drosophila melanogaster. Both TIM and its partner protein, the period protein PER, show robust circadian oscillations in mRNA and protein levels. Yet the role of TIM in the rhythm generation mechanism is largely unknown. To analyze TIM function, we constructed transgenic flies that carry a hea...

متن کامل

Wild-type circadian rhythmicity is dependent on closely spaced E boxes in the Drosophila timeless promoter.

Transcriptional regulation plays an important role in Drosophila melanogaster circadian rhythms. The period promoter has been well studied, but the timeless promoter has not been analyzed in detail. Mutagenesis of the canonical E box in the timeless promoter reduces but does not eliminate timeless mRNA cycling or locomotor activity rhythms. This is because there are at least two other cis-actin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biological rhythms

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2015